Phonetics

Image removed for copyright reasons.

- place, manner, voicing:

stop fricative

bilabial	$[\mathrm{b}],[\mathrm{p}]$	
labiodental		$[\mathrm{v}],[\mathrm{f}]$
interdental		$[\mathrm{d}],[\theta]$
alveolar	$[\mathrm{d}],[\mathrm{t}]$	$[\mathrm{z}],[\mathrm{s}]$
alveopalatal		$[3],\left[\int\right]$
palatal		
velar	$[\mathrm{g}],[\mathrm{k}]$	
glottal	$[\mathrm{P}]$	$[\mathrm{h}]$

So if [d] is a voiced alveolar stop, and [z] is a voiced alveolar fricative, then what's [n]? it's voiced, and a stop...
...and it's nasal.
[t], [d]: airflow stopped (at the alveolar ridge)
[n]: no flow through mouth, but lowered velum allows air to flow through nose

	stop	fricative	nasal (stop)
bilabial	$[\mathrm{p}],[\mathrm{b}]$		$[\mathrm{m}]$
labiodental		$[\mathrm{f}],[\mathrm{v}]$	
interdental		$[\theta],[\mathrm{[}]$	
alveolar	$[\mathrm{t}],[\mathrm{d}]$	$[\mathrm{s}],[\mathrm{z}]$	$[\mathrm{n}]$
alveopalatal		$[\mathrm{S}],[3]$	
palatal			$[\mathrm{y}]$
velar	$[\mathrm{k}],[\mathrm{g}]$		
glottal	$[\mathrm{P}]$	$[\mathrm{h}]$	

(voiceless, voiced)

This way of classifying the sounds leads us to wonder about gaps:

	stop	fricative	nasal (stop)
bilabial	$[\mathrm{p}],[\mathrm{b}]$	$[?],[?]$	$[\mathrm{m}],[?]$
labiodental		$[\mathrm{f}],[\mathrm{v}]$	
interdental		$[\theta],[\mathrm{\delta}]$	
alveolar	$[\mathrm{t}],[\mathrm{d}]$	$[\mathrm{s}],[\mathrm{z}]$	$[\mathrm{n}]$
alveopalatal		$\left[\int\right],[3]$	
palatal	$[?],[?]$	$[?],[?]$	$[?]$
velar	$[\mathrm{k}],[\mathrm{g}]$	$[?],[?]$	$[\mathrm{y}]$
glottal	$[?]$	$[\mathrm{h}]$	$[?]$

some of the gaps:

	stop	fricative	nasal (stop)
bilabial	$[\mathrm{p}],[\mathrm{b}]$	$[\phi],[\beta]$	$[\mathrm{m}],[\mathrm{m}]$
labiodental		$[\mathrm{f}],[\mathrm{v}]$	
(inter)dental	$[\mathrm{t}],[\mathrm{d}]$	$[\theta],[\mathrm{d}]$	$[\mathrm{n}] \ldots$
alveolar	$[\mathrm{t}],[\mathrm{d}]$	$[\mathrm{s}],[\mathrm{z}]$	$[\mathrm{n}] \ldots$
alveopalatal		$\left[\int\right],[3]$	
palatal	$[\mathrm{c}],[\mathrm{f}]$	$[\mathrm{c}],[\mathrm{j}]$	$[\mathrm{n}]([\tilde{\mathrm{n}}]) \ldots$
velar	$[\mathrm{k}],[\mathrm{g}]$	$[\mathrm{x}],[\mathrm{y}]$	$[\mathrm{y}] \ldots$
glottal	$[\mathrm{P}]$	$[\mathrm{h}]$	2...

some other gaps:
retroflex: tongue tip uvular: tongue body on palate: $[\mathrm{t}][\mathrm{d}][\mathrm{s}][\mathrm{z}][\mathrm{n}]$ touches near uvula: $[\mathrm{q}][\mathrm{G}][\chi][\mathrm{b}][\mathrm{N}]$

pharyngeal: constriction near pharyngeal wall:
[\dagger] C$] \quad$ (fricatives)

stop fricative nasal (stop)
bilabial
[p], [b]
$[\phi],[\beta] \quad[\mathrm{m}],[\mathrm{m}]$
labiodental
(inter)dental
alveolar
[t], [d]
[f], [v]
$[\theta],[$ ð] [n] $]$
alveopalatal
retroflex
[t], [d] [s], [z] [n]...
palatal
[c], [f]
[ç], [j] [n] ([ñ])...
velar
uvular
[k], [g]
[q], [G]
$[\chi],[$ [ь
[N$] \ldots$
pharyngeal
glottal
[?]
[ћ], [¢]
[h]
some neglected manners of articulation:
Approximants: tongue gestures briefly at another articulatory point, without making contact:

$$
\underline{\mathbf{w}[\mathrm{w}], \mathbf{y}[\mathrm{j}], \underline{l}[1], \underline{\mathbf{r}}[\mathrm{x}]\left(\begin{array}{r}
(\text { sometimes written }[\mathrm{r}], \\
\text { which we'll use })
\end{array}\right.}
$$

These are sometimes divided into glides([w], [j]) and liquids ([1], [r])

Affricates: like a stop immediately followed by a fricative ch [t 5$], \mathbf{j}[\mathrm{d} 3]$

bilabial	$\begin{aligned} & \text { stop } \\ & {[\mathrm{p}],[\mathrm{b}]} \end{aligned}$	fricative [$¢$], [β]	nasal (stop) [m], [m]	approx. affr. [w]
labiodental		[f], [v]		[v]
(inter)dental	[t], [d]	[θ], [${ }^{\text {] }}$]	[n]...	
alveolar	[t], [d]	[s], [z]	[n]...	[1]
alveopalatal		[J], [3]		[t5], [d3]
retroflex	[t], [d]	[s], [z]	[\dagger]...	[r]
palatal	[c], [f]	[ç], [j]	[n] ([ñ])...	[j]
velar	[k], [g]	[x], [y]	[ท]...	[u]
uvular	[q], [G]	[χ], [b$]$	[N$].$.	
pharyngeal		[\dagger], [¢]		
glottal	[?]	[h]		

...not that this exhausts the range of possible speech sounds (linguo-labial stops! voiceless liquids!), but it'll do for now...
interlude: what happens to you when you have a cold?

Image removed for copyright reasons.

Let's learn some IPA symbols for vowels, and practice reading IPA:
[a] father
[æ] lad
[ε] bed
[i] machine
[u] noon
[ə] machine

Let's learn some IPA symbols for vowels, and practice reading IPA:
[a] father
[æ] lad
[ε bed
[i] machine
[u] noon
[ə] machine
$\int i \operatorname{sclz}$ si $\int \varepsilon l z$

Let's learn some IPA symbols for vowels, and practice reading IPA:
[a] father
[æ] lad
[ε] bed
[i] machine
[u] noon
[ə] machine
$\int i$ s slz si $\int \varepsilon l z$
su sez hiz ə bæd εg

Let's learn some IPA symbols for vowels, and practice reading IPA:
[a] father
[æ] lad
[ε bed
[i] machine
[u] noon
[ə] machine
fi selz si $\int \varepsilon$ lz
su sez hiz ə bæd εg
ə mæn, ə plæn, ə kənæl, pænəma

Time to go through the vowels systematically.
compare: [i] bead
[æ] bad

in fact:	$[\mathrm{i}]$	heat	High
$[\mathrm{e}]$	hate	Mid	
	$[æ]$	hat	Low

Now compare:
[i] he [u] who

	Front		$\underline{\text { Back }}$	
High	[i]	héd	whód	
Mid	$[\mathrm{e}]$	hate	$[0]$	hoed
Low	$[æ]$	had	$[a]$	hot

Front
High [i] héd
Mid [e] hate
Low [æ] had

What's the difference between...
[u] (who'd) and [u] (hood)?
[i] (he'd) and [r] (hid)?
[e] (raid) and [ε] (red)?
[o] (coat) and [0] (caught)?
tense vs. lax; no English monosyllables end in lax vowels [fli], [flu], [fle], *[flı], *[flu], *[fle]

Front

High [i] héd,
[r] hild

Mid [e] hate, [ε] head

Low [æ] had tense, lax

[a] hot
one more pair of vowels:

Not all speakers distinguish between [ə] and [Λ].
"above" $=~ \partial b \wedge v$

English has (about) 14 vowels, and 5 letters to spell them with...

In English, all and only nonlow back vowels are rounded.
But is that necessary?

High	Front	Central	Back	rounded
	[i] he'd,			who'd, V
	[I] hịd			hood
Mid	[e] hate, [$\varepsilon]$ head	[ə] mach [1] dove		hoed, hawed
Low	[æ] had		[a]	hot
	[y], German Gefühl 'feeling' (high front rounded vowel)			
	[w] , Korean [kumn $]$ 'swing'(high back unrounded vow			

Classification of vowels also helps us in developing theories of phonologically natural sound changes.

Turkish noun plurals:	
aslan 'lion'	aslanlar 'lions'
kol 'arm'	kollar 'arms'
kul 'slave'	kullar 'slaves'
kuz 'daughter'	kuzlar 'daughters'
yel 'wind'	yeller 'winds'
dif 'tooth'	difler 'teeth'
gyl 'rose'	gyller 'roses'

this has all been about production...how about perception?

Image removed for copyright reasons.

Image removed for copyright reasons.

Image removed for copyright reasons.

Because a stop causes the acoustic signal, to...well...stop... ...the information about place of articulation, etc. comes from the stop's effects on the nearby vowels:

Image removed for copyright reasons.
other sources of information? McGurk effect
...and how much information do we need, really?

Sine Wave Synthesis

let's think more carefully about voicing....
Voice Onset Time: vocal cords start vibrating some time after the stop closure is released....

VOT 0-25 ms-->voiced
VOT $25 \mathrm{~ms}+-->$ voiceless
categorical perception: we have an arbitrary dividing line in the continuum of VOT
...categorical perception detected in 1-month-old infants.

Image of mouse removed for copyright reasons.
chinchillas also have categorical perception... (Kuhl and Miller 1975)

English VOT actually varies with position... (Ladefoged sound files)
...so in a sense, English has three bilabial oral stops: b, p, and ph.
So does Hindi?

pal	'take care of'
$\mathbf{p}^{\text {hal }}$	'knife blade'
bal	'hair'

...so in a sense, English has three bilabial oral stops: b, p, and ph. So does Hindi?

pal	'take care of'
$\mathbf{p}^{\text {hal }}$	'knife blade'
bal	'hair'

....seems like we're missing something...

allophones

Image removed for copyright reasons.
....English " p " and " p " ${ }^{\mathrm{h}}$ are in complementary distribution: there's no environment where you can get either one (unlike Hindi: pal 'take care of', p^{h} al 'knife blade').
remember allomorphs?
morpheme allomorphs
"electric" \longrightarrow electri[k]+"-al" $=$ "electrical"
in English, $[\mathrm{p}]$ and $\left[\mathrm{p}^{\mathrm{h}}\right]$ are allophones of $/ \mathrm{p} /$.
$\xrightarrow{\text { phoneme }} \xrightarrow{\text { allophones }}\left[\begin{array}{l}\text { ald between }[\mathrm{s}] \text { and a vowel } \\ \\ {\left[\mathrm{p}^{\mathrm{h}}\right] \text { elsewhere }}\end{array}\right.$
phoneme
$/ \mathrm{p} / \longrightarrow[\mathrm{p}] / \mathrm{s} _\mathrm{V}$

allophone
$/ \mathrm{p} / \longrightarrow[\mathrm{p}] / \mathrm{s} _\mathrm{V}$

more generally:
$\mathrm{A} \longrightarrow \mathrm{B} / \mathrm{C}_{\ldots} \mathrm{D}$
(and C and/or D can be absent...)

English

$/ \mathrm{p} / \longrightarrow[\mathrm{p}]$ between $[\mathrm{s}]$ and a vowel
Hindi
$/ \mathrm{p} / \longrightarrow[\mathrm{p}]$
$/ \mathrm{p}^{\mathrm{h}} \longrightarrow\left[\mathrm{p}^{\mathrm{h}}\right]$

How do you know whether two sounds are allophones or distinct phonemes?

- look for minimal pairs (like Hindi pal and $p^{h} a l$)
- if you can't find any, see if you can find a rule determining when you find which version of the sound.

